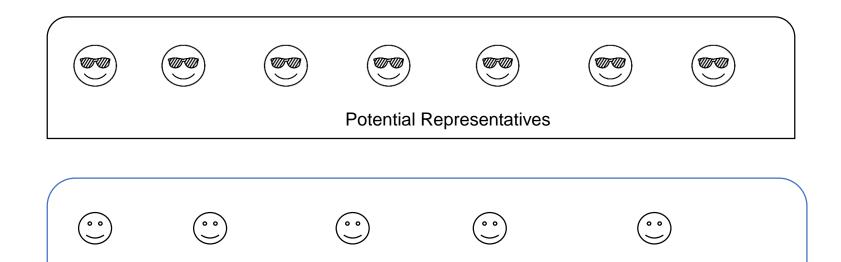
Clustering with Fair-Center Representation

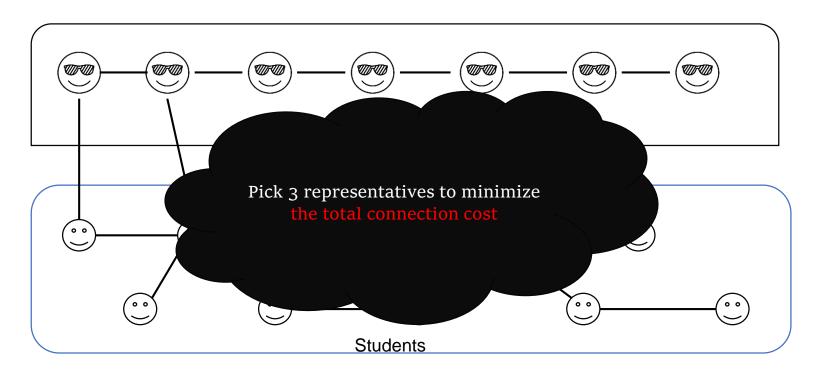
Parameterized Approximation Algorithms and Heuristics

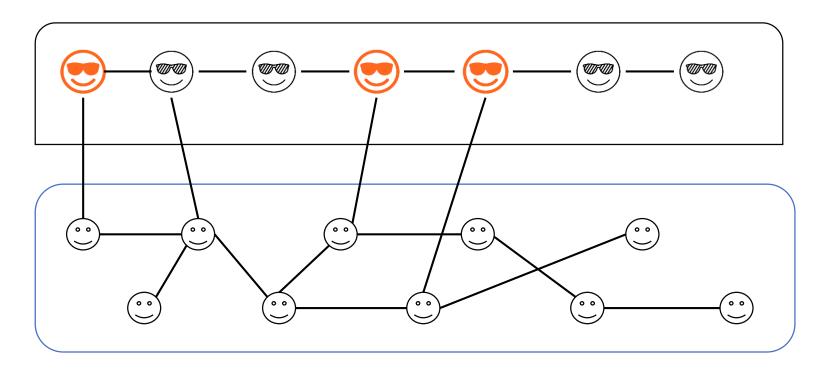
Ameet Gadekar 16 Nov 2022



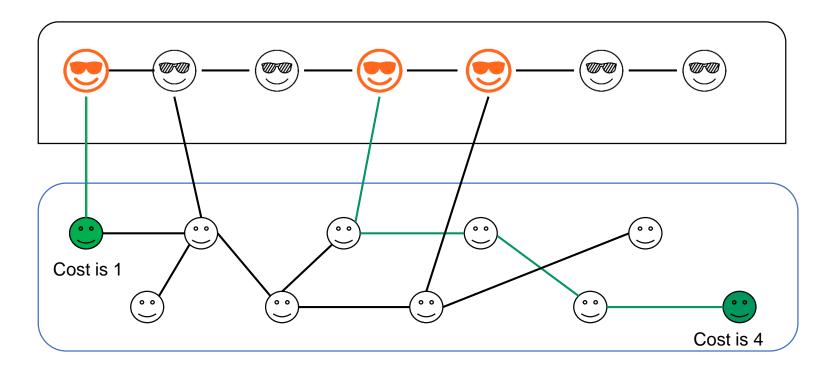
Joint work with

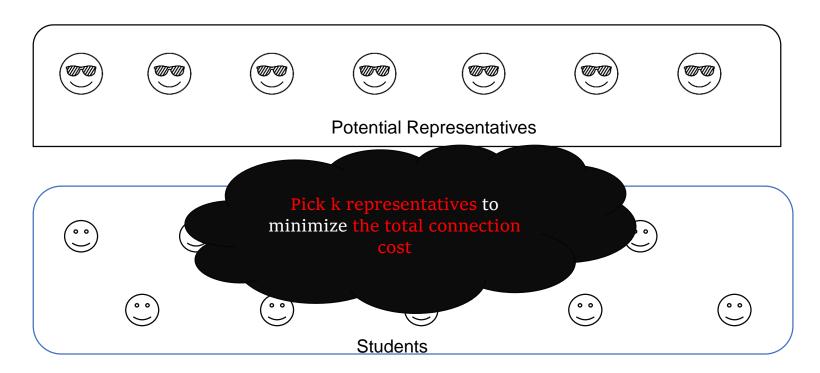
Suhas Thejaswi, Aalto Bruno Ordozgoiti, QMUL Michal Osadnik, Aalto

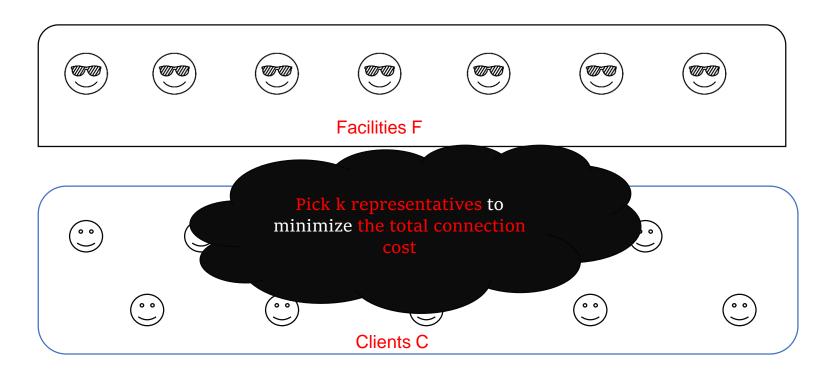

Appeared at KDD'22

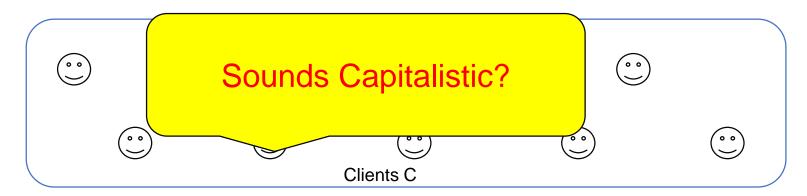


Students

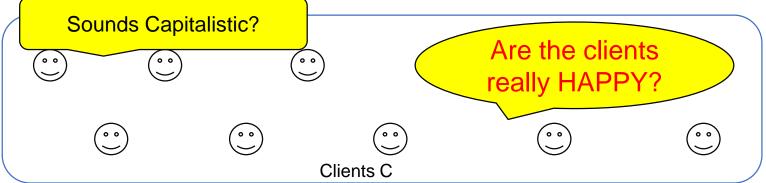




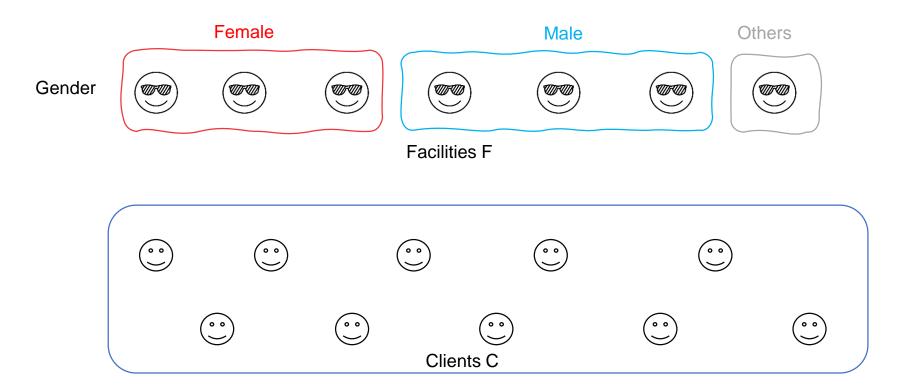




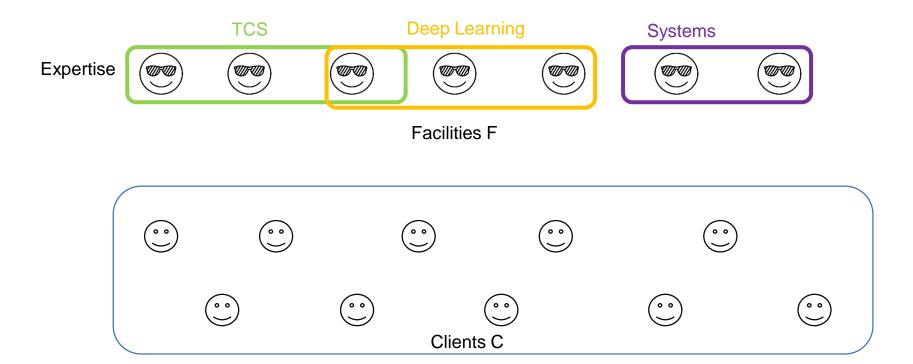

Pick k representatives to minimize the total connection cost

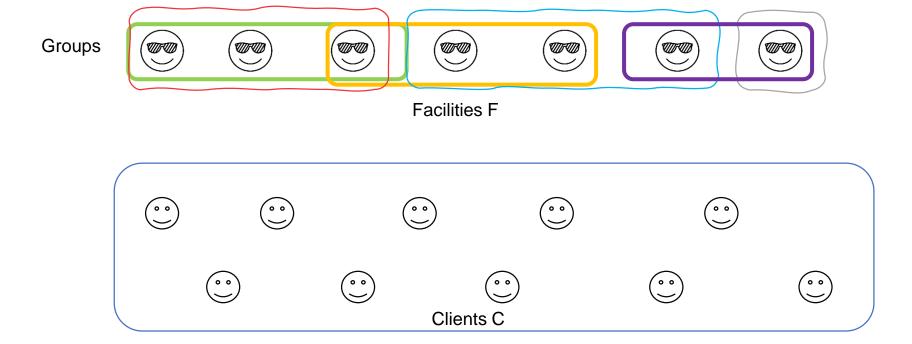


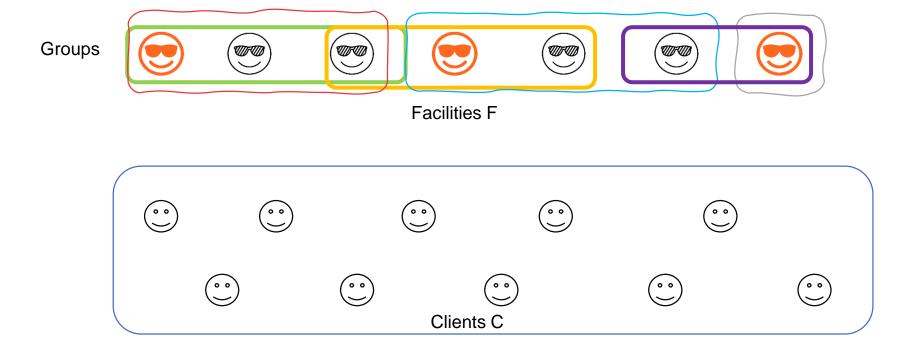
Pick k facilities to minimize the total connection cost



Fair Clustering – Diversity aware clustering







- Set of Facilities F
- Set of Clients C
- Distance function d
- Groups (G_1, \dots, G_t) over F, i.e., $G_i \subseteq F$
- Diversity constraints
 - $[a_i, b_i]$ for each G_i

Goal:

k-Median zed subset X of F with minimum total connection cost that respects diversity constraints.

$$min_X \sum_{c \in C} d(c, X)$$

s.t.
$$a_i \le |G_i \cap X| \le b_i$$
 for $i \in [t]$
 $|X| = k$

Literature

- Avoid over-representation
 - Well studied problem
 - Red-blue median problem
 [HKK ESA'10, Algorithimica'12]

 - Constant factor approximation algorithms

- Avoid under-representation
 - Recently defined and studied [TOG ECML-PKDD'21]
 - Computationally very different than its counter-part

Our results – Price for Diversity

- Trivial algorithm $O(|F|^k)$
 - best to hope for! (unless SETH fails)

- Even any approximation in time $O(|F|^{k-\epsilon})$ is ruled out!
 - Captures Dominating Set

- What if we allow additional running time?
 - Say f(k,t)poly(|F|)?
- Unfortunately, the problem is hard even when for f(k,t)poly(|F|)

Our results – Best Algorithms

• What if we want to approximate in time f(k,t)poly(|F|), for some f?

We can find $(1 + \frac{2}{e} + \epsilon)$ -approximation for Diversity aware k-median in randomized time $f(k, t, \epsilon)poly(|F|)$.

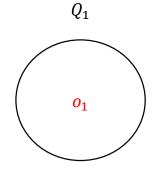
Our results – Best Algorithms

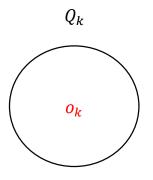
• What if we want to approximate in time f(k,t)poly(|F|), for some f?

We can find 1.74 -approximation for Diversity aware k-median in randomized time $f(k, t, \epsilon)poly(|F|)$.

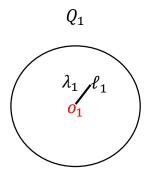
$$f(k,t,\epsilon) = \left(\frac{2^t}{\epsilon}\right)^{O(k)}$$

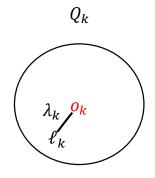
Our results – Best Algorithms

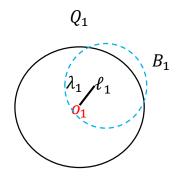

• What if we want to approximate in time f(k,t)poly(|F|), for some f?

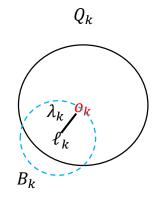

We can find $(1 + \frac{2}{e} + \epsilon)$ -approximation for Diversity aware k-median in randomized time $f(k, t, \epsilon)poly(|F|)$.

The approximation factor is tight*.

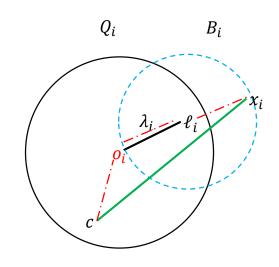

- Suppose the groups are disjoint...
- Consider some optimal solution $O = (o_1, \dots, o_k)$
- Let (Q_1, \dots, Q_k) be the clusters due to O
- How do we identify these clusters?




- Suppose |C| is small.
- Then, we can identify each Q_i by a closest client ℓ_i to o_i
- Let $\lambda_i \coloneqq d(o_i, \ell_i)$



• Then, if we know (ℓ_i, λ_i) , then we can consider the ball B_i at ℓ_i of radius λ_i



- Then, if we know (ℓ_i, λ_i) , then we can consider the ball B_i at ℓ_i of radius λ_i
- We know that $o_i \in B_i$
- For $c \in Q_i$, for any facility $x_i \in B_i$ $d(c, x_i) \le 3 \ d(c, o_i)$
- Hence, for $X = (x_1, \dots, x_k)$

$$\sum_{C} d(c, X) \le 3 \sum_{C} d(c, O)$$

- How do we handle diversity constraints?
 - Smart way of picking facilities from B_is
- How do we find (ℓ_i, λ_i) ?

```
(k/\epsilon)^{O(k)}poly(|F|) time
```

- Use client coresets to reduce the size to roughly $O(k \log |C|)$
- Discretize the distances

- How do we improve the approximation factor?
 - Using more clever approach submodular optimization

- How do we handle diversity constraints?
 - Smart way of picking facilities from B_i s

Infact, with more ideas, we can solve the general version when the groups are intersecting, resulting in time $\left(\frac{2^t}{\epsilon}\right)^{O(k)} poly(|F|)$

- How do we improve the approximation factor?
 - Using more clever approach submodular optimization

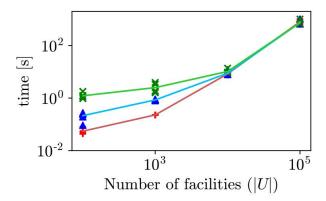
Other results

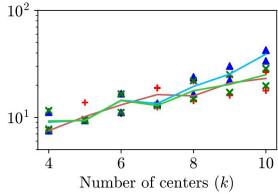
Algorithm extends to objectives other than k-Median

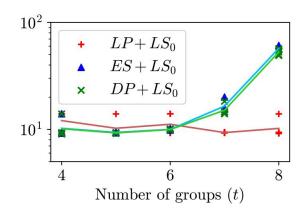
- Fast algorithm for bicriteria solution
 - based on a dynamic program for the feasibility problem
- Local search based heuristics

LP based heuristics

Experiments — scalability


Scalability of algorithms for finding a feasible constraint pattern.


- Synthetic data
- Desktop configuration


- LP : Linear program
- ES: Exhaustive search
- DP: Dynamic program

Experiments — scalability

Scalability of bicriteria algorithms

- Synthetic data
- Desktop configuration
- Aalto University School of Science

- LS_0 : Local search on k-Median
- LP: Linear program
- ES: Exhaustive search
- DP: Dynamic program

Experiments — real data set

Table 2: Experiments on datasets with k = 6, t = 4 and $\vec{r} = \{3, 3, 2, 1\}$.

Dataset	U	D	LS ₀	Bicriteria approximation $(2k, \alpha)$									Heuristics (k)				$FPT\left(k,t,\epsilon ight)$	
				LS ₀ + LP			LS ₀ + ES			LS ₀ + DP			LP + LS ₁		ES + LS ₁		$(3+\epsilon)$ -apx	
				time	ζ*	k^*	time	ζ*	k^*	time	ζ*	k^*	time	ζ*	time	ζ*	time	ζ*
switzerland	123	14	0.05	0.14	0.92	10	0.05	0.92	10	0.09	0.92	10	0.35	1.08	0.16	1.08	16 841.32	2.82
hepatitis	155	20	0.07	0.07	0.94	11	0.07	0.95	10	0.11	0.95	10	0.39	1.07	0.27	1.07	18 922.51	1.81
va	200	14	0.06	0.06	0.95	11	0.06	0.95	11	0.10	0.98	9	0.20	1.27	0.01	1.27	14 855.96	1.76
hungarian	294	14	0.14	0.14	0.95	10	0.14	0.96	9	0.17	0.98	8	0.74	1.02	4.00	1.01	-	-
heart-failure	299	13	0.18	0.19	0.93	11	0.19	0.95	9	0.22	0.95	9	0.71	1.05	3.72	1.05	-	-
cleveland	303	14	0.09	0.10	0.93	10	0.10	0.99	9	0.13	0.99	8	0.47	1.07	1.33	1.05	-	
student-mat	395	33	0.24	0.25	0.96	12	0.25	0.97	12	0.28	0.99	8	0.36	1.05	0.32	1.05	-	-
house-votes-84	435	17	0.16	0.16	0.97	10	0.16	0.98	9	0.19	0.98	9	0.71	1.17	3.20	1.11	-	-
student-por	649	33	0.50	0.51	0.98	10	0.50	0.98	10	0.53	0.99	9	0.49	1.02	0.52	1.02	-	-
drug-consumption	1884	32	2.58	2.69	0.98	12	2.68	0.98	12	2.72	0.99	8	0.49	1.08	0.41	1.07	-	-
bank	4521	17	8.56	8.72	0.97	10	8.71	0.99	10	8.76	0.98	9	1.41	1.10	2.07	1.10	-	-
nursery	12960	9	40.21	40.48	0.99	10	40.66	0.99	10	40.43	0.99	9	22.38	1.14	43.20	1.14	-	-
vehicle-coupon	12684	26	51.87	51.34	0.98	12	50.88	0.98	12	50.98	0.99	8	8.59	1.12	16.43	1.12	-	-
credit-card	30000	25	928.77	945.56	0.99	12	939.98	0.99	12	941.07	1.00	8	9.18	1.18	18.89	1.18	-	-
dutch-census	32561	15	376.73	384.15	0.97	12	390.82	0.98	12	385.36	0.99	8	76.34	1.40	151.18	1.32	-	
bank-full	45211	17	934.14	958.79	0.97	11	958.86	0.98	11	948.85	0.97	10	103.57	1.10	202.73	1.10	-	-
diabetes	101 766	50	15 896.14	-	-	-	-	_	_	-	_	_	829.96	1.07	1 503.05	1.01	-	-

Thank you

Appeared at KDD'22

 Selected for ACM Showcase on Kudos:

https://www.growkudos.com/publications/ 10.1145%252F3534678.3539487/reader

Source Code:

github.com/suhastheju/ diversity-aware-clustering

• Image credits: Midjourney