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𝒌-Median 

Clients C

Facilities F

Pick k facilities to 
minimize the total 

connection cost

Sounds Capitalistic?

Are the clients 

really HAPPY?



Fair Clustering –

Diversity aware clustering
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TCS Deep Learning Systems
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Diversity aware 𝒌-Median 

• Set of Facilities 𝐹

• Set of Clients 𝐶

• Distance function 𝑑

• Groups (𝐺1, ⋯ , 𝐺𝑡) over 𝐹, i.e., 

𝐺𝑖 ⊆ 𝐹

• With lower and upper bound 

requirements 

[𝑎𝑖 , 𝑏𝑖] for each 𝐺𝑖

Goal:

Find 𝑘-sized subset 𝑋 of 𝐹 with 

minimum total connection cost

that respects diversity constraints.

𝑚𝑖𝑛𝑋 ෍

𝑐∈𝐶

𝑑(𝑐, 𝑋)

s.t. ai ≤ 𝐺𝑖 ∩ 𝑋 ≤ 𝑏𝑖 for 𝑖 ∈ [𝑡]
𝑋 = 𝑘

Diversity constraints

𝒌-Median



Literature

• Avoid over-representation

• Well studied problem

• Red-blue median problem
[HKK ESA’10, Algorithimica’12]

• Matroid Median problem
[KKNSS SODA’11, CLLW IPCO’13, Swamy ACM Trans.’ 
16]

• Constant factor approximation 
algorithms

• Avoid under-representation

• Recently defined and studied
[TOG ECML-PKDD’21]

• Computationally very different 
than its counter-part



Our results – Price for Diversity

• Trivial algorithm 𝑶( 𝑭 𝒌)

• best to hope for!
(unless SETH fails)

• Even any approximation in 

time 𝑶( 𝑭 𝒌−𝝐) is ruled out!

• Captures Dominating Set

• What if we allow additional 

running time?

• Say 𝑓 𝑘, 𝑡 𝑝𝑜𝑙𝑦(|𝐹|)?

• Unfortunately, the problem is 

hard even when for

𝒇 𝒌, 𝒕 𝒑𝒐𝒍𝒚(|𝑭|)



Our results – Best Algorithms

• What if we want to approximate in time 𝑓 𝑘, 𝑡 𝑝𝑜𝑙𝑦(|𝐹|), for some 𝑓?  

We can find (1 +
2

𝑒
+ 𝜖)-approximation for Diversity aware 

𝑘-median in randomized time 𝑓 𝑘, 𝑡, 𝜖 𝑝𝑜𝑙𝑦 𝐹 .



Our results – Best Algorithms

• What if we want to approximate in time 𝑓 𝑘, 𝑡 𝑝𝑜𝑙𝑦(|𝐹|), for some 𝑓?  

We can find (1 +
2

𝑒
+ 𝜖)-approximation for Diversity aware 

𝑘-median in randomized time 𝑓 𝑘, 𝑡, 𝜖 𝑝𝑜𝑙𝑦 𝐹 .
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𝑓 𝑘, 𝑡, 𝜖 =
2𝑡

𝜖

𝑂(𝑘)



Our results – Best Algorithms

• What if we want to approximate in time 𝑓 𝑘, 𝑡 𝑝𝑜𝑙𝑦(|𝐹|), for some 𝑓?  

We can find (1 +
2

𝑒
+ 𝜖)-approximation for Diversity aware 

𝑘-median in randomized time 𝑓 𝑘, 𝑡, 𝜖 𝑝𝑜𝑙𝑦 𝐹 .

The approximation factor is tight*.

*Assuming Gap-ETH.



Overview of the algorithm

• Suppose the groups are 

disjoint…

• Consider some optimal solution 

𝑂 = (𝑜1, ⋯ , 𝑜𝑘)

• Let (𝑄1, ⋯ , 𝑄𝑘) be the clusters 

due to 𝑂

• How do we identify these 

clusters?

𝑜1 𝑜𝑘

𝑄1 𝑄𝑘



Overview of the algorithm

• Suppose |𝐶| is small.

• Then, we can identify each 𝑄𝑖
by a closest client ℓ𝑖 to 𝑜𝑖

• Let 𝜆𝑖 ≔ 𝑑(𝑜𝑖 , ℓ𝑖) 𝑜1 𝑜𝑘

𝑄1 𝑄𝑘

ℓ1

ℓ𝑘

𝜆1

𝜆𝑘



Overview of the algorithm

• Then, if we know (ℓ𝑖 , 𝜆𝑖), then we can 

consider the ball 𝐵𝑖 at ℓ𝑖 of radius 𝜆𝑖

𝑜1 𝑜𝑘

𝑄1 𝑄𝑘

ℓ1

ℓ𝑘

𝜆1

𝜆𝑘

𝐵1

𝐵𝑘



Overview of the algorithm

• Then, if we know (ℓ𝑖 , 𝜆𝑖), then we can 

consider the ball 𝐵𝑖 at ℓ𝑖 of radius 𝜆𝑖

• We know that 𝑜𝑖 ∈ 𝐵𝑖

• For 𝑐 ∈ 𝑄𝑖,for any facility 𝑥𝑖 ∈ 𝐵𝑖
𝑑 𝑐, 𝑥𝑖 ≤ 3 𝑑(𝑐, 𝑜𝑖)

• Hence, for 𝑋 = (𝑥1, ⋯ , 𝑥𝑘)

෍

𝑐

𝑑 𝑐, 𝑋 ≤ 3 ෍

𝑐

𝑑(𝑐, 𝑂)

𝑜𝑖

𝑄𝑖

ℓ𝑖𝜆𝑖

𝑐

𝑥𝑖

𝐵𝑖



Overview of the algorithm

• How do we handle diversity constraints?

• Smart way of picking facilities from 𝐵𝑖s

• How do we find ℓ𝒊, 𝝀𝒊 ?

• Use client coresets to reduce the size to roughly 𝑂(𝑘 log |𝐶| )

• Discretize the distances

• How do we improve the approximation factor?

• Using more clever approach – submodular optimization

(𝑘 /𝜖 )𝑂 𝑘 𝑝𝑜𝑙𝑦(|𝐹|) time



Overview of the algorithm

• How do we handle diversity constraints?

• Smart way of picking facilities from 𝐵𝑖s

• How do we find ℓ𝒊, 𝝀𝒊 ?

• Use client coresets to reduce the size to roughly 𝑂(𝑘 log |𝐶| )

• Discretize the distances

• How do we improve the approximation factor?

• Using more clever approach – submodular optimization

Infact, with more ideas, we can solve the general version when the 

groups are intersecting, resulting in time 
2𝑡

𝜖

𝑂 𝑘

𝑝𝑜𝑙𝑦(|𝐹|)



Other results

• Algorithm extends to objectives other than 𝒌-Median

• Fast algorithm for bicriteria solution

• based on a dynamic program for the feasibility problem

• Local search based heuristics

• LP based heuristics



Experiments — scalability

• Synthetic data

• Desktop configuration

• LP  : Linear program

• ES  : Exhaustive search

• DP  : Dynamic program



Experiments — scalability

• Synthetic data

• Desktop configuration

• 𝐿𝑆0 : Local search on 𝑘-Median

• LP  : Linear program

• ES  : Exhaustive search

• DP  : Dynamic program



Experiments — real data set



Thank you

• Appeared at KDD’22

• Selected for ACM Showcase on 

Kudos:

• Source Code: 

• Image credits: Midjourney

https://www.growkudos.com/publications/

10.1145%252F3534678.3539487/reader

github.com/suhastheju/

diversity-aware-clustering


